Uncertainty quantification under dependent random variables by a generalized polynomial dimensional decomposition

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entanglement Quantification Made Easy: Polynomial Measures Invariant under Convex Decomposition.

Quantifying entanglement in composite systems is a fundamental challenge, yet exact results are available in only a few special cases. This is because hard optimization problems are routinely involved, such as finding the convex decomposition of a mixed state with the minimal average pure-state entanglement, the so-called convex roof. We show that under certain conditions such a problem becomes...

متن کامل

Adaptive Polynomial Dimensional Decompositions for Uncertainty Quantification in High Dimensions

The main theme of this paper is intelligently derived truncation strategies for polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response function commonly encountered in engineering and applied sciences. The truncations exploit global sensitivity analysis for defining the relevant pruning criteria, resulting in two new adaptive-sparse versions of PDD: (1) a fully ada...

متن کامل

Uncertainty quantification of high-dimensional complex systems by multiplicative polynomial dimensional decompositions

The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods for solving high-dimensional stochastic problems. When a stochastic response is dominantly of multiplicative nature, the standard PDD approximation, predicated on additive function decomposition, may not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent thi...

متن کامل

Robust design optimization by polynomial dimensional decomposition

This paper introduces four new methods for robust design optimization (RDO) of complex engineering systems. The methods involve polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response for statistical moment analysis, a novel integration of PDD and score functions for calculating the secondmoment sensitivities with respect to the design variables, and standard gradie...

متن کامل

Global sensitivity analysis by polynomial dimensional decomposition

This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2019

ISSN: 0045-7825

DOI: 10.1016/j.cma.2018.09.026